Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.042
1.
J Clin Invest ; 134(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38690734

There is intense interest in identifying compounds that selectively kill senescent cells, termed senolytics, for ameliorating age-related comorbidities. However, screening for senolytic compounds currently relies on primary cells or cell lines where senescence is induced in vitro. Given the complexity of senescent cells across tissues and diseases, this approach may not target the senescent cells that develop under specific conditions in vivo. In this issue of the JCI, Lee et al. describe a pipeline for high-throughput drug screening of senolytic compounds where senescence was induced in vivo and identify the HSP90 inhibitor XL888 as a candidate senolytic to treat idiopathic pulmonary fibrosis.


Cellular Senescence , HSP90 Heat-Shock Proteins , Idiopathic Pulmonary Fibrosis , Senotherapeutics , Humans , Senotherapeutics/pharmacology , Cellular Senescence/drug effects , Animals , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Mice
2.
J Cancer Res Clin Oncol ; 150(5): 240, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713284

PURPOSE: Head and neck cancer is the sixth most common type of cancer worldwide, wherein the immune responses are closely associated with disease occurrence, development, and prognosis. Investigation of the role of immunogenic cell death-related genes (ICDGs) in adaptive immune response activation may provide cues into the mechanism underlying the outcome of HNSCC immunotherapy. METHODS: ICDGs expression patterns in HNSCC were analyzed, after which consensus clustering in HNSCC cohort conducted. A 4-gene prognostic model was constructed through LASSO and Cox regression analyses to analyze the prognostic index using the TCGA dataset, followed by validation with two GEO datasets. The distribution of immune cells and the response to immunotherapy were compared between different risk subtypes through multiple algorithms. Moreover, immunohistochemical (IHC) analyses were conducted to validate the prognostic value of HSP90AA1 as a predictor of HNSCC patient prognosis. In vitro assays were performed to further detect the effect of HSP90AA1 in the development of HNSCC. RESULTS: A novel prognostic index based on four ICDGs was constructed and proved to be useful as an independent factor of HNSCC prognosis. The risk score derived from this model grouped patients into high- and low-risk subtypes, wherein the high-risk subtype had worse survival outcomes and poorer immunotherapy response. IHC analysis validated the applicability of HSP90AA1 as a predictor of prognosis of HNSCC patients. HSP90AA1 expression in tumor cells promotes the progression of HNSCC. CONCLUSIONS: Together, these results highlight a novel four-gene prognostic signature as a valuable tool to assess survival status and prognosis of HNSCC patients.


HSP90 Heat-Shock Proteins , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Prognosis , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Female , Male , Immunogenic Cell Death , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Middle Aged , Immunotherapy/methods , Gene Expression Regulation, Neoplastic
3.
Nat Commun ; 15(1): 3743, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702316

Arteriovenous fistulas (AVFs) are the most common vascular access points for hemodialysis (HD), but they have a high incidence of postoperative dysfunction, mainly due to excessive neointimal hyperplasia (NIH). Our previous studies have revealed a highly conserved LncRNA-LncDACH1 as an important regulator of cardiomyocyte and fibroblast proliferation. Herein, we find that LncDACH1 regulates NIH in AVF in male mice with conditional knockout of smooth muscle cell-specific LncDACH1 and in male mice model of AVF with LncDACH1 overexpression by adeno-associated virus. Mechanistically, silence of LncDACH1 activates p-AKT through promoting the expression of heat shock protein 90 (HSP90) and serine/arginine-rich splicing factor protein kinase 1 (SRPK1). Moreover, LncDACH1 is transcriptionally activated by transcription factor KLF9 that binds directly to the promoter region of the LncDACH1 gene. In this work, during AVF NIH, LncDACH1 is downregulated by KLF9 and promotes NIH through the HSP90/ SRPK1/ AKT signaling axis.


HSP90 Heat-Shock Proteins , Hyperplasia , Kruppel-Like Transcription Factors , Myocytes, Smooth Muscle , Neointima , Proto-Oncogene Proteins c-akt , RNA, Long Noncoding , Animals , Male , Neointima/pathology , Neointima/metabolism , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Arteriovenous Fistula/metabolism , Arteriovenous Fistula/genetics , Arteriovenous Fistula/pathology , Mice, Knockout , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Humans , Signal Transduction , Mice, Inbred C57BL , Phenotype , Cell Proliferation
4.
Cancer Rep (Hoboken) ; 7(5): e2051, 2024 May.
Article En | MEDLINE | ID: mdl-38702989

BACKGROUND: Glioblastomas are characterized by aggressive behavior. Surgery, radiotherapy, and alkylating agents, including temozolomide are the most common treatment options for glioblastoma. Often, conventional therapies fail to treat these tumors since they develop drug resistance. There is a need for newer agents to combat this deadly tumor. Natural products such as gedunin have shown efficacy in several human diseases. A comprehensive study of gedunin, an heat shock protein (HSP)90 inhibitor, has not been thoroughly investigated in glioblastoma cell lines with different genetic modifications. AIMS: A key objective of this study was to determine how gedunin affects the biological and signaling mechanisms in glioblastoma cells, and to determine how those mechanisms affect the proliferation and apoptosis of glioblastoma cells. METHODS: The viability potentials of gedunin were tested using MTT, cell counts, and wound healing assays. Gedunin's effects on glioma cells were further validated using LDH and colony formation assays. In addition, we investigated the survival and apoptotic molecular signaling targets perturbed by gedunin using Western blot analysis and flow cytometry. RESULTS: Our results show that there was a reduction in cell viability and inhibition of wound healing in the cells tested. Western blot analysis of the gene expression data revealed genes such as EGFR and mTOR/Akt/NF kappa B to be associated with gedunin sensitivity. Gedunin treatment induced apoptosis by cleaving poly ADP-ribose polymerase, activating caspases, and downregulating BCL-xL. Based on these results, gedunin suppressed cell growth and HSP client proteins, resulting in apoptosis in glioblastoma cell lines. CONCLUSION: Our data provide in vitro support for the anticancer activity of gedunin in glioma cells by downregulating cancer survival proteins.


Apoptosis , Cell Proliferation , Glioblastoma , Limonins , Humans , Glioblastoma/pathology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Signal Transduction/drug effects , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Survival/drug effects , Antineoplastic Agents/pharmacology
5.
Mol Biol Rep ; 51(1): 621, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709430

BACKGROUND: To investigate the effect of plasma-derived extracellular vesicles (EVs) or conventional medium in fertilization and early embryo development rate in mice. METHODS AND RESULTS: MII oocytes (matured in vivo or in vitro conditions) were obtained from female mice. The extracellular vesicles were isolated by ultracentrifugation of plasma and were analyzed and measured for size and morphology by dynamic light scattering (DLS) and transmission electron microscopy (TEM). By western blotting analysis, the EVs proteins markers such as CD82 protein and heat shock protein 90 (HSP90) were investigated. Incorporating DiI-labeled EVs within the oocyte cytoplasm was visible at 23 h in oocyte cytoplasm. Also, the effective proteins in the early reproductive process were determined in isolated EVs by western blotting. These EVs had a positive effect on the fertilization rate (P < 0.05). The early embryo development (8 cell, morula and blastocyst stages) was higher in groups supplemented with EVs (P < 0.01). CONCLUSION: Our findings showed that supplementing in vitro maturation media with EVs derived- plasma was beneficial for mice's embryo development.


Embryonic Development , Extracellular Vesicles , Oocytes , Animals , Extracellular Vesicles/metabolism , Mice , Female , Oocytes/metabolism , Oocytes/cytology , Fertilization in Vitro/methods , Blastocyst/metabolism , In Vitro Oocyte Maturation Techniques/methods , HSP90 Heat-Shock Proteins/metabolism
6.
Nat Commun ; 15(1): 3333, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637533

Genetic variation in human populations can result in the misfolding and aggregation of proteins, giving rise to systemic and neurodegenerative diseases that require management by proteostasis. Here, we define the role of GRP94, the endoplasmic reticulum Hsp90 chaperone paralog, in managing alpha-1-antitrypsin deficiency on a residue-by-residue basis using Gaussian process regression-based machine learning to profile the spatial covariance relationships that dictate protein folding arising from sequence variants in the population. Covariance analysis suggests a role for the ATPase activity of GRP94 in controlling the N- to C-terminal cooperative folding of alpha-1-antitrypsin responsible for the correction of liver aggregation and lung-disease phenotypes of alpha-1-antitrypsin deficiency. Gaussian process-based spatial covariance profiling provides a standard model built on covariant principles to evaluate the role of proteostasis components in guiding information flow from genome to proteome in response to genetic variation, potentially allowing us to intervene in the onset and progression of complex multi-system human diseases.


Protein Folding , alpha 1-Antitrypsin Deficiency , Humans , Molecular Chaperones/metabolism , Proteostasis , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , alpha 1-Antitrypsin Deficiency/genetics , Genetic Variation
7.
J Med Chem ; 67(8): 6189-6206, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38577779

Identification of intracellular targets of anticancer drug candidates provides key information on their mechanism of action. Exploiting the ability of the anticancer (C∧N)-chelated half-sandwich iridium(III) complexes to covalently bind proteins, click chemistry with a bioorthogonal azido probe was used to localize a phenyloxazoline-chelated iridium complex within cells and profile its interactome at the proteome-wide scale. Proteins involved in protein folding and actin cytoskeleton regulation were identified as high-affinity targets. Upon iridium complex treatment, the folding activity of Heat Shock Protein HSP90 was inhibited in vitro and major cytoskeleton disorganization was observed. A wide array of imaging and biochemical methods validated selected targets and provided a multiscale overview of the effects of this complex on live human cells. We demonstrate that it behaves as a dual agent, inducing both electrophilic and oxidative stresses in cells that account for its cytotoxicity. The proposed methodological workflow can open innovative avenues in metallodrug discovery.


Antineoplastic Agents , Coordination Complexes , Iridium , Oxidative Stress , Humans , Iridium/chemistry , Iridium/pharmacology , Oxidative Stress/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/chemistry , Click Chemistry
8.
Eur J Med Chem ; 270: 116356, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38579621

The heat shock protein 90 kDa (Hsp90) molecular chaperone machinery is responsible for the folding and activation of hundreds of important clients such as kinases, steroid hormone receptors, transcription factors, etc. This process is dynamically regulated in an ATP-dependent manner by Hsp90 co-chaperones including a group of tetratricopeptide (TPR) motif proteins that bind to the C-terminus of Hsp90. Among these TPR containing co-chaperones, FK506-binding protein 51 kDa (FKBP51) is reported to play an important role in stress-related pathologies, psychiatric disorders, Alzheimer's disease, and cancer, making FKBP51-Hsp90 interaction a potential therapeutic target. In this study, we report identification of potent and selective inhibitors of FKBP51-Hsp90 protein-protein interaction using a structure-based virtual screening approach. Upon in vitro evaluation, the identified hits show a considerable degree of selectivity towards FKBP51 over other TPR proteins, particularly for highly homologous FKBP52. Tyr355 of FKBP51 emerged as an important contributor to inhibitor's specificity. Additionally, we demonstrate the impact of these inhibitors on cellular energy metabolism, and neurite outgrowth, which are subjects of FKBP51 regulation. Overall, the results from this study highlight a novel pharmacological approach towards regulation of FKBP51 function and more generally, Hsp90 function via its interaction with TPR co-chaperones.


HSP90 Heat-Shock Proteins , Tacrolimus Binding Proteins , Humans , Protein Binding , Tacrolimus Binding Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones , Transcription Factors/metabolism
9.
Sheng Li Xue Bao ; 76(2): 257-265, 2024 Apr 25.
Article Zh | MEDLINE | ID: mdl-38658375

The present study aims to observe the change in expression of heat shock protein 90 (HSP90) along with amyloid-ß (Aß) and phosphorylated Tau (p-Tau) protein levels in the hippocampus tissue of Alzheimer's disease (AD) transgenic animal model with age. APP/PS1 transgenic mice at age of 6-, 9- and 12-month and C57BL/6J mice of the same age were used. The cognitive abilities of these animals were evaluated using a Morris water maze. Western blot or immunohistochemistry was used to detect the expressions of HSP90 and Aß1-42, as well as the phosphorylation levels of Tau protein in the hippocampus. The hsp90 mRNA levels and the morphology and number of cells in the hippocampus were detected with real-time quantitative polymerase chain reaction (qRT-PCR) and Nissl staining, respectively. The results showed that compared with C57BL/6J mice of the same age, HSP90 and hsp90 mRNA expression were decreased (P < 0.05 or P < 0.01), while Aß1-42 and p-Tau protein levels were increased (P < 0.05 or P < 0.01) in the hippocampal tissue of APP/PS1 transgenic mice. Meanwhile, the decrease in HSP90 and hsp90 mRNA expression (P < 0.05 or P < 0.01), the increase in Aß1-42 and p-Tau levels (P < 0.01 or P < 0.05) in hippocampal tissue and the reduction in behavioral ability showed a progressive development with the advancing of age in the APP/PS1 transgenic mice. In conclusion, in the hippocampal tissue of APP/PS1 mice, the decrease in HSP90 expression and the increase in Aß1-42 and p-Tau levels together with the decline of their cognitive ability are age-dependent.


Alzheimer Disease , Amyloid beta-Peptides , Amyloid beta-Protein Precursor , HSP90 Heat-Shock Proteins , Hippocampus , Mice, Inbred C57BL , Mice, Transgenic , tau Proteins , Animals , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Hippocampus/metabolism , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , tau Proteins/metabolism , tau Proteins/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Male , Disease Models, Animal , Phosphorylation , Age Factors , Aging/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Peptide Fragments/metabolism , Peptide Fragments/genetics , Presenilin-1/genetics , Presenilin-1/metabolism
10.
Sci Rep ; 14(1): 9483, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664520

The present study predicts the molecular targets and druglike properties of the phyto-compound piperine (PIP) by in silico studies including molecular docking simulation, druglikeness prediction and ADME analysis for prospective therapeutic benefits against diabetic complications. PIP was encapsulated in biodegradable polymer poly-lactide-co-glycolide (PLGA) to form nanopiperine (NPIP) and their physico-chemical properties were characterized by AFM and DLS. ∼ 30 nm sized NPIP showed 86.68% encapsulation efficiency and - 6 mV zeta potential, demonstrated great interactive stability and binding with CT-DNA displaying upsurge in molar ellipticity during CD spectroscopy. NPIP lowered glucose levels in peripheral circulation by > 65 mg/dL compared to disease model and improved glucose influx in alloxan-induced in vivo and in vitro diabetes models concerted with 3-folds decrease in ROS production, ROS-induced DNA damage and 27.24% decrease in nuclear condensation. The 25% increase in % cell viability and inhibition in chromosome aberration justified the initiation of p53 and PARP DNA repairing protein expression and maintenance of Hsp90. Thus, the experimental study corroborated well with in silico predictions of modulating the p53/PARP-1/Hsp90 axis, with predicted dock score value of - 8.72, - 8.57, - 8.76 kcal/mol respectively, validated docking-based preventive approaches for unravelling the intricacies of molecular signalling and nano-drug efficacy as therapeutics for diabetics.


Alkaloids , Benzodioxoles , HSP90 Heat-Shock Proteins , Hyperglycemia , Molecular Docking Simulation , Piperidines , Poly (ADP-Ribose) Polymerase-1 , Polylactic Acid-Polyglycolic Acid Copolymer , Polyunsaturated Alkamides , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , HSP90 Heat-Shock Proteins/metabolism , Animals , Piperidines/pharmacology , Piperidines/chemistry , Benzodioxoles/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/administration & dosage , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Alloxan , Rats , Humans , Male , Reactive Oxygen Species/metabolism , Mice , Nanoparticles/chemistry , DNA Damage/drug effects
11.
J Nanobiotechnology ; 22(1): 198, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649957

Heat shock protein 90 (HSP90) is overexpressed in numerous cancers, promotes the maturation of numerous oncoproteins and facilitates cancer cell growth. Certain HSP90 inhibitors have entered clinical trials. Although less than satisfactory clinical effects or insurmountable toxicity have compelled these trials to be terminated or postponed, these results of preclinical and clinical studies demonstrated that the prospects of targeting therapeutic strategies involving HSP90 inhibitors deserve enough attention. Nanoparticulate-based drug delivery systems have been generally supposed as one of the most promising formulations especially for targeting strategies. However, so far, no active targeting nano-formulations have succeeded in clinical translation, mainly due to complicated preparation, complex formulations leading to difficult industrialization, incomplete biocompatibility or nontoxicity. In this study, HSP90 and CD44-targeted A6 peptide functionalized biomimetic nanoparticles (A6-NP) was designed and various degrees of A6-modification on nanoparticles were fabricated to evaluate targeting ability and anticancer efficiency. With no excipients, the hydrophobic HSP90 inhibitor G2111 and A6-conjugated human serum albumin could self-assemble into nanoparticles with a uniform particle size of approximately 200 nm, easy fabrication, well biocompatibility and avoidance of hepatotoxicity. Besides, G2111 encapsulated in A6-NP was only released less than 5% in 12 h, which may avoid off-target cell toxicity before entering into cancer cells. A6 peptide modification could significantly enhance uptake within a short time. Moreover, A6-NP continues to exert the broad anticancer spectrum of Hsp90 inhibitors and displays remarkable targeting ability and anticancer efficacy both in hematological malignancies and solid tumors (with colon tumors as the model cancer) both in vitro and in vivo. Overall, A6-NP, as a simple, biomimetic and active dual-targeting (CD44 and HSP90) nanomedicine, displays high potential for clinical translation.


Antineoplastic Agents , Colonic Neoplasms , HSP90 Heat-Shock Proteins , Hyaluronan Receptors , Leukemia, Myeloid, Acute , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Humans , Hyaluronan Receptors/metabolism , Animals , Cell Line, Tumor , Mice , Colonic Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Nanoparticles/chemistry , Drug Delivery Systems/methods , Mice, Nude , Mice, Inbred BALB C , Peptides/chemistry , Peptides/pharmacology
12.
Phytomedicine ; 128: 155497, 2024 Jun.
Article En | MEDLINE | ID: mdl-38640855

BACKGROUND: Colorectal cancer (CRC) is a significant public health issue, ranking as one of the predominant cancer types globally in terms of incidence. Intriguingly, Arenobufagin (Are), a compound extracted from toad venom, has demonstrated the potential to inhibit tumor growth effectively. PURPOSE: This study aimed to explore Are's molecular targets and unravel its antitumor mechanism in CRC. Specifically, we were interested in its impact on immune checkpoint modulation and correlations with HSP90ß-STAT3-PD-L1 axis activity. METHODS: We investigated the in vivo antitumor effects of Are by constructing a colorectalcancer subcutaneous xenograft mouse model. Subsequently, we employed single-cell multi-omics technology to study the potential mechanism by which Are inhibits CRC. Utilizing target-responsive accessibility profiling (TRAP) technology, we identified heatshock protein 90ß (HSP90ß) as the direct target of Are, and confirmed this through a microscale thermophoresis experiment (MST). Further downstream mechanisms were explored through techniques such as co-immunoprecipitation, Western blotting, qPCR, and immunofluorescence. Concurrently, we arrived at the same research conclusion at the organoid level by co-cultivating with immune cells. RESULTS: We observed that Are inhibits PD-Ll expression in CRC tumor xenografts at low concentrations. Moreover, TRAP revealed that HSP90ß's accessibility significantly decreased upon Are binding. We demonstrated a decrease in the activity of the HSP90ß-STAT3-PD-Ll axis following low-concentration Are treatment in vivo. The PDO analysis showed improved enrichment of lymphocytes, particularly T cells, on the PDOs following Are treatment. CONCLUSION: Contrary to previous research focusing on the direct cytotoxicity of Are towards tumor cells, our findings indicate that it can also inhibit tumor growth at lower concentrations through the modulation of immune checkpoints. This study unveils a novel anti-tumor mechanism of Are and stimulates contemplation on the dose-response relationship of natural products, which is beneficial for the clinical translational application of Are.


Bufanolides , Colorectal Neoplasms , HSP90 Heat-Shock Proteins , STAT3 Transcription Factor , Xenograft Model Antitumor Assays , Bufanolides/pharmacology , Animals , Colorectal Neoplasms/drug therapy , Humans , Mice , STAT3 Transcription Factor/metabolism , T-Lymphocytes/drug effects , Cell Line, Tumor , B7-H1 Antigen , Mice, Nude , Mice, Inbred BALB C , Amphibian Venoms/pharmacology , Female
13.
Theranostics ; 14(6): 2442-2463, 2024.
Article En | MEDLINE | ID: mdl-38646654

Rationale: Resistance to targeted therapies like trastuzumab remains a critical challenge for HER2-positive breast cancer patients. Despite the progress of several N-terminal HSP90 inhibitors in clinical trials, none have achieved approval for clinical use, primarily due to issues such as induction of the heat shock response (HSR), off-target effects, and unfavorable toxicity profiles. We sought to examine the effects of HVH-2930, a novel C-terminal HSP90 inhibitor, in overcoming trastuzumab resistance. Methods: The effect of HVH-2930 on trastuzumab-sensitive and -resistant cell lines in vitro was evaluated in terms of cell viability, expression of HSP90 client proteins, and impact on cancer stem cells. An in vivo model with trastuzumab-resistant JIMT-1 cells was used to examine the efficacy and toxicity of HVH-2930. Results: HVH-2930 was rationally designed to fit into the ATP-binding pocket interface cavity of the hHSP90 homodimer in the C-terminal domain of HSP90, stabilizing its open conformation and hindering ATP binding. HVH-2930 induces apoptosis without inducing the HSR but by specifically suppressing the HER2 signaling pathway. This occurs with the downregulation of HER2/p95HER2 and disruption of HER2 family member heterodimerization. Attenuation of cancer stem cell (CSC)-like properties was associated with the downregulation of stemness factors such as ALDH1, CD44, Nanog and Oct4. Furthermore, HVH-2930 administration inhibited angiogenesis and tumor growth in trastuzumab-resistant xenograft mice. A synergistic effect was observed when combining HVH-2930 and paclitaxel in JIMT-1 xenografts. Conclusion: Our findings highlight the potent efficacy of HVH-2930 in overcoming trastuzumab resistance in HER2-positive breast cancer. Further investigation is warranted to fully establish its therapeutic potential.


Breast Neoplasms , Drug Resistance, Neoplasm , HSP90 Heat-Shock Proteins , Receptor, ErbB-2 , Trastuzumab , Xenograft Model Antitumor Assays , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Humans , Drug Resistance, Neoplasm/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Animals , Female , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Cell Line, Tumor , Mice , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Mice, Nude , Apoptosis/drug effects , Cell Survival/drug effects , Antineoplastic Agents/pharmacology
14.
Lett Appl Microbiol ; 77(5)2024 May 03.
Article En | MEDLINE | ID: mdl-38658187

Species from Candida parapsilosis complex are frequently found in neonatal candidemia. The antifungal agents to treat this infection are limited and the occurrence of low in vitro susceptibility to echinocandins such as micafungin has been observed. In this context, the chaperone Hsp90 could be a target to reduce resistance. Thus, the objective of this research was to identify isolates from the C. parapsilosis complex and verify the action of Hsp90 inhibitors associated with micafungin. The fungal identification was based on genetic sequencing and mass spectrometry. Minimal inhibitory concentrations were determined by broth microdilution method according to Clinical Laboratory and Standards Institute. The evaluation of the interaction between micafungin with Hsp90 inhibitors was realized using the checkerboard methodology. According to the polyphasic taxonomy, C. parapsilosis sensu stricto was the most frequently identified, followed by C. orthopsilosis and C. metapsilosis, and one isolate of Lodderomyces elongisporus was identified by genetic sequencing. The Hsp90 inhibitor geladanamycin associated with micafungin showed a synergic effect in 31.25% of the isolates, a better result was observed with radicicol, which shows synergic effect in 56.25% tested yeasts. The results obtained demonstrate that blocking Hsp90 could be effective to reduce antifungal resistance to echinocandins.


Antifungal Agents , Candida parapsilosis , HSP90 Heat-Shock Proteins , Micafungin , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Micafungin/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Humans , Candida parapsilosis/drug effects , Candida parapsilosis/isolation & purification , Candida parapsilosis/genetics , Infant, Newborn , Echinocandins/pharmacology , Benzoquinones/pharmacology , Lipopeptides/pharmacology , Drug Synergism , Lactams, Macrocyclic/pharmacology , Candidemia/microbiology , Drug Resistance, Fungal , Candida/drug effects , Candida/classification , Candida/genetics
15.
Vaccine ; 42(14): 3355-3364, 2024 May 22.
Article En | MEDLINE | ID: mdl-38631949

To better understand the role of pHsp90 adjuvant in immune response modulation, we proposed the use of the Receptor Binding Domain (RBD) of the Spike protein of SARS-CoV2, the principal candidate in the design of subunit vaccines. We evaluated the humoral and cellular immune responses against RBD through the strategy "protein mixture" (Adjuvant + Antigen). The rRBD adjuvanted with rAtHsp81.2 group showed a higher increase of the anti-rRBD IgG1, while the rRBD adjuvanted with rNbHsp90.3 group showed a significant increase in anti-rRBD IgG2b/2a. These results were consistent with the cellular immune response analysis. Spleen cell cultures from rRBD + rNbHsp90.3-immunized mice showed significantly increased IFN-γ production. In contrast, spleen cell cultures from rRBD + rAtHsp81.2-immunized mice showed significantly increased IL-4 levels. Finally, vaccines adjuvanted with rNbHsp90.3 induced higher neutralizing antibody responses compared to those adjuvanted with rAtHsp81.2. To know whether both chaperones must form complexes to generate an effective immune response, we performed co-immunoprecipitation (co-IP) assays. The results indicated that the greater neutralizing capacity observed in the rRBD adjuvanted with rNbHsp90.3 group would be given by the rRBD-rNbHsp90.3 interaction rather than by the quality of the immune response triggered by the adjuvants. These results, together with our previous results, provide a comparative benchmark of these two novel and safe vaccine adjuvants for their capacity to stimulate immunity to a subunit vaccine, demonstrating the capacity of adjuvanted SARS-CoV2 subunit vaccines. Furthermore, these results revealed differences in the ability to modulate the immune response between these two pHsp90s, highlighting the importance of adjuvant selection for future rational vaccine and adjuvant design.


Adjuvants, Immunologic , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , HSP90 Heat-Shock Proteins , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , Mice , Adjuvants, Immunologic/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , HSP90 Heat-Shock Proteins/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Female , COVID-19/prevention & control , COVID-19/immunology , Mice, Inbred BALB C , Immunity, Cellular , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Adjuvants, Vaccine , Immunity, Humoral , Humans
16.
Int J Mol Sci ; 25(6)2024 Mar 17.
Article En | MEDLINE | ID: mdl-38542375

The review describes correlations between impaired functioning of chaperones and co-chaperones in Alzheimer's disease (AD) pathogenesis. The study aims to highlight significant lines of research in this field. Chaperones like Hsp90 or Hsp70 are critical agents in regulating cell homeostasis. Due to some conditions, like aging, their activity is damaged, resulting in ß-amyloid and tau aggregation. This leads to the development of neurocognitive impairment. Dysregulation of co-chaperones is one of the causes of this condition. Disorders in the functioning of molecules like PP5, Cdc37, CacyBP/SIPTRAP1, CHIP protein, FKBP52, or STIP1 play a key role in AD pathogenesis. PP5, Cdc37, CacyBP/SIPTRAP1, and FKBP52 are Hsp90 co-chaperones. CHIP protein is a co-chaperone that switches Hsp70/Hsp90 complexes, and STIP1 binds to Hsp70. Recognition of precise processes allows for the invention of effective treatment methods. Potential drugs may either reduce tau levels or inhibit tau accumulation and aggregation. Some substances neuroprotect from Aß toxicity. Further studies on chaperones and co-chaperones are required to understand the fundamental tenets of this topic more entirely and improve the prevention and treatment of AD.


Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Molecular Chaperones/metabolism , HSP90 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins , Amyloid beta-Peptides
17.
Cell Chem Biol ; 31(4): 729-742.e13, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38492573

The molecular chaperone heat shock protein 90 (Hsp90) has an essential but largely undefined role in maintaining proteostasis in Plasmodium falciparum, the most lethal malaria parasite. Herein, we identify BX-2819 and XL888 as potent P. falciparum (Pf)Hsp90 inhibitors. Derivatization of XL888's scaffold led to the development of Tropane 1, as a PfHsp90-selective binder with nanomolar affinity. Hsp90 inhibitors exhibit anti-Plasmodium activity against the liver, asexual blood, and early gametocyte life stages. Thermal proteome profiling was implemented to assess PfHsp90-dependent proteome stability, and the proteasome-the main site of cellular protein recycling-was enriched among proteins with perturbed stability upon PfHsp90 inhibition. Subsequent biochemical and cellular studies suggest that PfHsp90 directly promotes proteasome hydrolysis by chaperoning the active 26S complex. These findings expand our knowledge of the PfHsp90-dependent proteome and protein quality control mechanisms in these pathogenic parasites, as well as further characterize this chaperone as a potential antimalarial drug target.


Antimalarials , Plasmodium falciparum , Plasmodium falciparum/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteome/metabolism , Antimalarials/chemistry , HSP90 Heat-Shock Proteins , Molecular Chaperones/metabolism
18.
Sci Adv ; 10(10): eadn2706, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38457507

The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the multicellularity long-term evolution experiment (MuLTEE). We demonstrate that cellular elongation, a key adaptation underpinning increased biophysical toughness and organismal size, is convergently driven by down-regulation of the chaperone Hsp90. Mechanistically, Hsp90-mediated morphogenesis operates by destabilizing the cyclin-dependent kinase Cdc28, resulting in delayed mitosis and prolonged polarized growth. Reinstatement of Hsp90 or Cdc28 expression resulted in shortened cells that formed smaller groups with reduced multicellular fitness. Together, our results show how ancient protein folding systems can be tuned to drive rapid evolution at a new level of biological individuality by revealing novel developmental phenotypes.


Biological Evolution , HSP90 Heat-Shock Proteins , HSP90 Heat-Shock Proteins/metabolism , Mitosis , Protein Folding , Phenotype
19.
Cell Stress Chaperones ; 29(2): 285-299, 2024 Apr.
Article En | MEDLINE | ID: mdl-38428516

Females of the extremophile crustacean, Artemia franciscana, either release motile nauplii via the ovoviviparous pathway or encysted embryos (cysts) via the oviparous pathway. Cysts contain an abundant amount of the ATP-independent small heat shock protein that contributes to stress tolerance and embryo development, however, little is known of the role of ATP-dependent molecular chaperone, heat shock protein 90 (Hsp90) in the two processes. In this study, a hsp90 was cloned from A. franciscana. Characteristic domains of ArHsp90 were simulated from the deduced amino acid sequence, and 3D structures of ArHsp90 and Hsp90s of organisms from different groups were aligned. RNA interference was then employed to characterize ArHsp90 in A. franciscana nauplii and cysts. The partial knockdown of ArHsp90 slowed the development of nauplius-destined, but not cyst-destined embryos. ArHsp90 knockdown also reduced the survival and stress tolerance of nauplii newly released from A. franciscana females. Although the reduction of ArHsp90 had no effect on the development of diapause-destined embryos, the resulting cysts displayed reduced tolerance to desiccation and low temperature, two stresses normally encountered by A. franciscana in its natural environment. The results reveal that Hsp90 contributes to the development, growth, and stress tolerance of A. franciscana, an organism of practical importance as a feed source in aquaculture.


Artemia , Cysts , Animals , Female , Artemia/metabolism , Molecular Chaperones/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Embryonic Development , Embryo, Nonmammalian/metabolism , Cysts/metabolism , Adenosine Triphosphate/metabolism
20.
Int J Biol Macromol ; 264(Pt 2): 130705, 2024 Apr.
Article En | MEDLINE | ID: mdl-38458300

The mitochondria are known to exert significant influence on various aspects of cancer cell physiology. The suppression of mitochondrial function represents a novel avenue for the advancement of anti-cancer pharmaceuticals. The heat shock protein HSP90 functions as a versatile regulator of mitochondrial metabolism in cancer cells, rendering as a promising target for anticancer interventions. In this work, a novel acid polysaccharide named as XQZ3 was extracted from Chlorella pyrenoidosa and purified by DEAE-cellulose and gel-filtration chromatography. The structural characteristic of XQZ3 was evaluated by monosaccharides composition, methylation analysis, TEM, FT-IR, and 2D-NMR. It was found that XQZ3 with a molecular weight of 29.13 kDa was a complex branched polysaccharide with a backbone mainly composed of galactose and mannose. It exhibited good antitumor activity in vitro and in vivo by patient-derived 3D organoid models and patient-derived xenografts models. The mechanistic investigations revealed that XQZ3 specifically interacted with HSP90, impeding the activation of the HSP90/AKT/mTOR signaling cascade. This, in turn, led to the induction of mitochondrial dysfunction, autophagy, and apoptosis, ultimately resulting in the demise of cancer cells due to nutrient deprivation. This study offers a comprehensive theoretical foundation for the advancement of XQZ3, a novel polysaccharide inhibitor targeting HSP90, with potential as an effective therapeutic agent against cancer.


Chlorella , Neoplasms , Humans , Proto-Oncogene Proteins c-akt/metabolism , Chlorella/metabolism , Spectroscopy, Fourier Transform Infrared , Signal Transduction , HSP90 Heat-Shock Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Apoptosis , Energy Metabolism , Mitochondria/metabolism , Polysaccharides/pharmacology , Polysaccharides/metabolism
...